
Runtime Adaptation of Architectural Models:

An Approach for Adapting User Interfaces

Diego Rodŕıguez-Gracia1, Javier Criado1,
Luis Iribarne1, Nicolás Padilla1, and Cristina Vicente-Chicote2

1 Applied Computing Group, University of Almeŕıa, Spain
{diegorg,javi.criado,luis.iribarne,npadilla}@ual.es

2 Dpt. of Info. Communication Technologies, Tech. University of Cartagena, Spain
cristina.vicente@upct.es

Abstract. Traditional techniques of model-driven development usually
concern with the production of non-executable models. These models are
usually manipulated at design-time by means of fixed model transforma-
tions. However, in some situations, models need to be transformed at
runtime. Moreover, the transformations handling these models could be
provided with a dynamic behavior enabling the adaptation to the cur-
rent execution context and requirements. In this vein, this paper defines
a transformation pattern designed for flexible model transformation that
can be dynamically composed by selecting the appropriate transforma-
tion rules from a rule repository, which is also represented by a model.
The rules in the repository are updated at each step of adaptation to
improve later rule selection. We chose the domain of user interfaces,
specified as component-based architectural models, as our case study.

Keywords: UI, Adaptive Transformation, Rule Selection, MDE.

1 Introduction

In Model-Driven Engineering (MDE), transformations to enable model refine-
ment (commonly, into other models or into code) are usually composed and
executed at design-time. Furthermore, models are usually static artifacts and
model transformations allows us to provide such elements with a dynamic be-
haviour. Recently, runtime model transformations are being increasingly used as
a means of enabling the so-called executable models or models@runtime. In this
context, transformations are used to adapt the models dynamically, although in
most cases, they usually show a static behaviour. Such a static behavior pre-
vents models to adapt to requirements not taken into account a priori. In order
to enable model transformations to evolve at runtime, we need to provide them
with a dynamic behaviour.

In this paper we aim to provide model transformations with such a dynamic
behavior that allows them to vary in time according to the context. Specifically,
our approach addresses the adaptation of architectural models by means of trans-
formations that are themselves adapted at runtime [1]. Our architectural model

A. Abelló, L. Bellatreche, and B. Benatallah (Eds.): MEDI 2012, LNCS 7602, pp. 16–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Runtime Adaptation of Architectural Models 17

definition is described in a previous work [2]. The transformations are are dy-
namically composed at runtime by selecting the most appropriate transformation
rules from a rule repository according to the current situation. This repository is
also updated at each adaptation stage in order to improve the following rule se-
lection process. The transformation pattern proposed has been made as flexible
as possible, enabling designers to instantiate it by adding or removing elements,
and thus allowing them to customize their runtime model adaptation processes.
An example instance of this pattern for dynamically adapting component-based
user interface models is described below to illustrate the proposed approach. It
is worth noting that the goals of this research emerge from the previous results
obtained in [2], [3], and [4].

To achieve our intended goals, we made use of both M2M and M2T transfor-
mations [5]. At runtime, when the system detects a need for adaptation (e.g.,
when the context properties change, or when the user or the system trigger a
certain kind of event), an M2M transformation is invoked. This takes the rule
repository and the current model (the one to be adapted) as inputs, and selects
the most appropriate rules to be executed from the repository according to the
context information available in the model. The generated M2M transformations
contain a set of transformation rules. These transformation rules are divided into
a Left-Hand-Side (LHS) and a Right-Hand-Side (RHS). The LHS and RHS refer
to elements in the source and the target models, respectively. Both LHS and
RHS can be represented through variables, patterns, and logic [5].

Then, an M2T process generates an M2M transformation out of the rules
selected. Our M2T transformation was implemented using JET[6], and generates
M2M transformations defined in ATL [7]. We selected ATL because it enables
the adoption of an hybrid (of declarative and imperative) M2M transformation
approach. In fact, in ATL it is possible to define hybrid transformation rules in
which both the source and the target declarative patterns can be complemented
with an imperative block We have also defined a rule metamodel, aimed to help
designers: (1) to define correct transformation rules (the metamodel establishes
the structure of these rules and how they can be combined), and (2) to store
these rules in a repository.

We have chosen the domain of user interfaces as part of a project of the Span-
ish Ministry to develop adaptive user interfaces at runtime, as there is a recog-
nized and increasingly growing need to provide these artifacts with dynamic
adaptation capabilities. Here, user interfaces are specified using component-
based architectural models (each UI element is represented by a component).
These models may vary at runtime due to changes in the context—e.g., user in-
teraction, a temporal event, visual condition, etc. Hence, our proposal is useful to
adapt component-based architecture systems at runtime (such as user interfaces
based on components) by means of models and traditional techniques of model-
driven engineering. Our approach presents two main advantages concerning the
adaptation of component-based architectural models: (a) the model transforma-
tion applied to the architectural model is not fixed, but dynamically composed
at runtime, and (b) this composition is made by selecting the most appropriate

18 D. Rodŕıguez-Gracia et al.

set of rules (according to the current context) from those available in a reposi-
tory, making the adaptation logic for the architectural models be upgradable by
changing the rule repository, making it possible to change the adaptation logic
by adding/removing/changing the rules in the repository.

The rest of the article is organized as follows: Section 2 introduces the goal
of adapting component-based user interfaces. Section 3 presents the proposed
transformation pattern. In Section 4 we detail the proposed approach to achieve
model transformation adaptation at runtime. Section 5 reviews related work.
Finally, Section 6 outlines the conclusions and future work.

2 A Running Example: User Interface Adaptation

The main objective of our proposal is to achieve the adaptation of user interfaces
at runtime. Specifically, we are interested in studying the evolution of simple and
friendly User Interfaces (UI) based on software components, in a similar way
iGoogle widget-based user interfaces do (i.e., a set of UI components). In this
context, user interfaces are described by means of architectural models containing
the specification of user-interface components. These architectural models (which
represent the user interfaces) can vary at runtime due to certain changes in the
context —e.g., user interaction, a temporal event, visual condition, etc.

For instance, let’s suppose two users in the system which are performing a
communication task by means of a chat, an email, an audio and a video high
quality with other users. Consequently, the graphical user interface offered by
the system contains the UI components that provided these services. Let’s sup-
pose now that a new user profile role is connected to the system, and which
requires the use of new services. This requirement involves the user interface
automatically change to adapt its architecture to the new situation: i.e., remov-
ing the video high quality while a video low quality component, a blackboard
component and a filesharing component are inserted (Figure 1).

GUI

VideoHQ Audio

GUI

User Interface 1 User Interface 2

Architectural Model 1 Architectural Model 2

Adaptation
Process

Email Chat

Audio VideoHQ

Email Chat

Audio VideoLQ

BlackBoard FileSharing

ChatChatEmail Email VideoLQ

Audio BlackBoard FileSharing

Fig. 1. User Interface Adaptation

Runtime Adaptation of Architectural Models 19

Figure 1 illustrates the adaptation process that is performed at the architec-
tural model level representing the user interfaces. Once the new architectural
model is obtained (after the adaptation process occurs) a regeneration process is
executed to show those software components of the adapted user interface. This
regeneration process is not described in this paper, focusing only here on the
model transformation process adapting the architectural models, and on how
this M2M transformation is dynamically produced from a rule repository (the
aims of this paper).

3 Model Transformation Pattern

As previously stated, design-time models are, in principle, static artifacts. Nev-
ertheless, we will define design-time architectural models that will be changed
and adapted to the requirements of the system at runtime. In order to modify
our architectural models, we follow an MDE methodology so that we can achieve
their change and adaptation by M2M transformations. We will design an M2M
transformation where both the input and output metamodels are the same: the
abstract architectural metamodel (AMM). Therefore, this process will turn an
abstract architectural model AMa into another AMb (Figure 2).

This ModelTransformation process enables the evolution and adaptation of
architectural models. Its behaviour is described by the set of rules it contains.
Thus, if our goal is to make the architectural model transformation not be a pre-
defined process but a process adapted to the system’s needs and requirements,
we must get the transformation rules to change depending on the circumstances.
In order to achieve this goal, we based on the following conditions: (a) Build a
rule repository where all rules that may be applied in an architectural model
transformation are stored; (b) Design a rule selection process that takes as in-
put the repository and generates as output a subset of rules; (c) Ensure that
the rule selection process can generate different rule subsets, depending on the
circumstances; (d) Develop a process that takes as input the selected rule subset
and generates an architectural model transformation; (e) Ensure that both the
described processes and their elements are within the MDE framework.

The previous steps involved in the adaptation process share a number of
similarities. In order to organize and exploit them, we define a transformation
pattern. Building a transformation pattern allows us to model the structure and
composition of generic elements that may exist in our transformation schema.
Such elements provide us with some information about the types of modules

AMM

AMa AMbModelTransformation
in out

conforms_toconforms_to

Fig. 2. Architectural Model Transformation

20 D. Rodŕıguez-Gracia et al.

Fig. 3. Transformation Pattern

that can be included in possible transformation configurations and how they
connect with the other elements of the schema. Furthermore, this pattern offers
us the possibility of changing such schema by creating a different model from
the metamodel defined in Figure 3, which has been implemented using EMF [8].

A transformation schema (TransformationSchema) is made up of three differ-
ent types of elements: transformations (Transformation), models (Model) and
metamodels (Metamodel). Metamodel elements describe the model definitions of
the transformation schema. Model elements identify and define the system mod-
els. Transformation elements can be classified into two groups: M2M and M2T.
M2M transformations represent model-to-model transformation processes; there-
fore, they will have one or more schema models associated both as input and
output through the source and target references, respectively. On the other
hand, M2T transformations represent the transformation processes that take one
or more system models as their input (through source) and generate a textual
file that, in our case, corresponds to a M2M transformation (through target).

4 Adaptive Model Transformation

The transformation schema enabling the runtime adaptation of architectural
model, proposed in this paper, is an instance of the transformation pattern de-
scribed in Section 3. This schema, illustrated in Figure 4, comprises the following
three steps (repeatedly executed at each adaptation step):

(a) RuleSelection, is the rule selection process that starts when an attribute
from a defined class in the initial architectural model (AMi) takes a spe-
cific value (i.e., when the user or the system trigger an event). This process,
that is carried out at runtime, is obtained as an instance of the M2M con-
cept. It takes as input the repository model (RRM) and the AMi (see step
#1 in Figure 4), and generates as output (see step #2 in Figure 4) a rule
transformation model (RMi) for architectural models, being RMi ⊆ RRM .

(b) RuleSelectionLog (RSL), is an instance of the M2M concept. Its input is
the repository model (RRM) and the selected rule model (RMi) (step #3),

Runtime Adaptation of Architectural Models 21

<<model>>
RRM

(repository)

<<metamodel>>
RMM

<<model>>

RMi

<<transformation>>
RuleSelection

(M2M)

<<transformation>>
RuleTransformation

(M2T)

<<transformation>>

ModelTransformationi
(M2M)

<<metamodel>>
AMM

<<model>>

AMi

conforms_to conforms_to

conforms_to

conforms_to conforms_to

1: source

2: target

5: source

6: target

7: source
8: target

1: source

state i

<<transformation>>
RuleSelectionLog

(M2M)

3:source

3: source
4: target

11:source

15:source

<<transformation>>

ModelTransformationi+1
(M2M)

<<transformation>>
RuleSelectionLog

(M2M)

state i+1

9: source

11: source

12: target

10: target <<model>>

RMi+1

<<transformation>>
RuleSelection

(M2M)

<<model>>

AMi+1

9: source

<<transformation>>
RuleTransformation

(M2T)

13: source

14: target

Fig. 4. Transformation Schema

and it generates (step #4) the updated rule repository model for the next
adaptation as output.

(c) RuleTransformation, is obtained as an instance of the M2T concept. It
takes as input (step #5) the rule model (RMi) and generates as output
(step #6) a new transformation process for architectural models at runtime
(ModelTransformationi).

(d) ModelTransformation, is obtained as an instance of the M2M concept and
generates as output (step #8) a new architectural model at runtime (AMi+1)
starting from the initial architectural model (AMi).

4.1 Transformation Rules: An Overview

As previously indicated, our goal is to achieve the adaptability of architectural
model transformations at runtime. To this end, and given a transformation rule
repository for architectural models (RRM), the system generates transformation
rule models (RMi) that adapt to the properties of the system context at runtime.
The transformation rules define the degree of adaptability of our system, as such
adaptability depends on the ability of the transformation rule model (RMi) to
modify itself from external events of the system. That is why we focus on the
description of the transformation rules and the attributes that affect the rule
selection process (RuleSelection) and the rule repository (RRM), where the
transformation rules of the architectural models are stored.

22 D. Rodŕıguez-Gracia et al.

Both the transformation rule model (RMi) and the rule repository (RRM) are
defined according to the transformation rule metamodel for architectural model
(RMM). In such metamodel, which defines both RMi and RRM transforma-
tions, we will focus on describing the class (Rule) which is directly involved with
the rule selection logic belonging to the rule model generation process (RuleSe-
lection). The class Rule has the following attributes:

— rule name: It is unique and identifies the rule.
— purpose: It is defined a priori and indicates the purpose of the rule. Only

those rules of the rule repository (RRM) whose purpose coincides with one
of the values of the the purposes attribute defined in the architectural model
(AMi), will belong to the transformation rule model (RMi).

— is priority: It is established a priori. If its value is true in a specific rule
of the rule repository, it indicates that the rule must always be inserted in
the transformation rule model (RMi) regardless of its weight, provided that
it satisfies the condition detailed in purpose.

— weight: It is established a priori. That rule in the rule repository (RRM)
which satisfies the purpose condition, has the attribute is priority =

false and has the biggest weight of all rules satisfying such conditions,
will be inserted in the transformation rule model (RMi).

— run counter: Indicates the number of times the purpose of the rule has
matched one of the values of the the purposes attribute defined in the
architectural model (AMi).

— selection counter: Indicates the number of times the rule has been selected
by the RuleSelection process to generate the RMi.

— ratio: Indicates the frequency of using a transformation rule (the result of
dividing selection counter by run counter).

The architectural model transformation rules are stored in the rule repository
(RRM). It is a model defined according to a rule metamodel (RMM) and is
made up of a priori transformation rules. As previously mentioned, those rules
that fulfil a specific metric are chosen through a rule selection process (RuleSe-
lection). Table 1 shows different rules that belong to the rule repository and will
be used as an instance in Section 4.2.

4.2 Rule Selection

After an overview of the transformation rules described in Section 4.1, we studied
the transformation process known as RuleSelection through which rule models
(RMi) are generated from the rule repository (RRM) to get the transformation
adaptation at runtime. According to our transformation schema, this process is
obtained as an instance of the M2M concept of the transformation pattern (see
Section 3). Hence, RuleSelection is a model-to-model transformation process
that takes as input (source) the initial architectural model (AMi) defined in
accordance with an architectural metamodel (AMM), and the rule repository
model (RRM) defined in compliance with the rule metamodel (RMM). As

Runtime Adaptation of Architectural Models 23

Table 1. Example rule repository (RRM)

rule name purpose is priority weight ratio run c selec c
Insert Chat InsertChat true 2.0 1.0 3 3
Insert Audio InsertAudio false 4.0 1.0 2 2
Insert Video1 InsertVideoLowQ false 11.0 0.5 2 1
Insert Video2 InsertVideoLowQ true 6.0 0.5 2 1
Insert Video3 InsertVideoHighQ false 9.0 1.0 3 3
Insert BlackBoard1 InsertBlackBoard false 6.0 0.5 2 1
Insert BlackBoard2 InsertBlackBoard false 4.0 0.5 2 1
Insert FileSharing InsertFileSharing false 3.0 0.0 0 0
Delete Chat DeleteChat true 3.0 0.0 0 0
Delete Audio DeleteAudio true 3.0 0.0 0 0
Delete Video DeleteVideo true 3.0 0.0 0 0
Delete BlackBoard DeleteBlackBoard true 3.0 0.0 0 0
Delete FileSharing DeleteFileSharing true 3.0 0.0 0 0

output (target), RuleSelection generates the transformation rule model (RMi)
also defined according to the rule metamodel (RMM) (see Figure 4).

The process starts when an attribute of a class defined in the initial archi-
tectural model (AMi) takes a specific value. This class is known as Launcher.
Then, the RMi is generated starting from the RRM . Both models are defined
in compliance with the rule metamodel (RMM). This new rule model (RMi) is
made up of a subset of rules existing in the rule repository model (RRM); their
purpose attribute will coincide with one of the purposes attribute of the class
Launcher, defined in the AMi and they must fulfil a selection metric based on
specific values of the is priority and weight attributes.

The selection logic is as follows: those rules a priori defined as priority
(is priority = true) in the RRM will be copied in the selected rules model
(RMi) regardless of the weight value assigned at state i, provided that the
value of the purpose attribute of the rule coincides with one of the values of
the purposes attribute of the architectural model (AMi!Launcher.purposes
contains RRM!Rule.purpose). Regarding those rules not defined as priority in
the rule repository (is priority = false), the process will copy in the RMi

the rule with the biggest weight value among all assigned to the rules of the rule
repository, where the value of the purpose attribute of the rule coincides with
one of the values of the purposes attribute of the initial architectural model.
This selection logic of the RuleSelection process is shown in Table 2.

As an example, let us suppose the following architectural model AMi where
AMi!Launcher.purposes = [‘DeleteVideo’,‘InsertVideoLowQ’, ‘Insert-

BlackBoard’,‘InsertFileSharing’]. We assume that the transformation rule
repository model (RRM) is the one specified in Table 1. If, for external reasons,
the state of the running attribute of the architectural model (AMi) changed into
true (AMi!Launcher.running = true) at the state i, the RuleSelection trans-
formation would start. Then, the selected rule model (RMi) would be generated
from the rule repository model (RRM) by selecting the rules with the attribute
purpose = ‘DeleteVideo’ or ‘InsertVideoLowQ’ or ‘InsertBlackBoard’

or ‘InsertFileSharing’, which have the biggest weight or which have their
attribute is priority = true, as shown in Table 3.

24 D. Rodŕıguez-Gracia et al.

Table 2. Selection Logic

Input: AMi and RRM Output: RMi

if AMi!Launcher.running = true then
RuleSelection

end if

RuleSelection
1: for n = 1→ RRM.size do
2: if AMi!Launcher.purposes[EString1..EStringn] contains RRM!Rulen.purpose then
3: if RRM!Rulen.is priority = true then
4: RMi.add(RRM!Rulen)
5: else
6: if ∃! j, j ∈ 1..RRM.size/ RRM!Rulej.weight > RRM!Rulen.weight then

7: RMi.add(RRM!Rulen)
8: end if
9: end if
10: end if
11: end for

Table 3. Model of selected rules (RMi)

rule name purpose is priority weight
Insert Video2 InsertVideoLowQ true 6.0
Insert BlackBoard1 InsertBlackBoard false 6.0
Insert FileSharing InsertFileSharing false 3.0
Delete Video DeleteVideo true 3.0

4.3 Rule Selection Log (RSL)

When the selected rule model (RMi) has been acquired by RuleSelection, the
next step is to update the rule repository execution log. This step is necessary to
update the attributes representing the frequency with which the rules are used
in the various executions of the system, which is given in the weight attribute of
the rule that may be used by RuleSelection as explained in Section 4.2. Thus,
RuleSelectionLog (RSL) is an M2M transformation process with the selected
rule model (RMi) and the rule repository model (RRM) as input (source),
which generates the updated rule repository model as an output (target), as
shown in Figure 4.

Moreover, RSL transformation uses bonus and penalty coefficients, which
add or subtract weight, respectively, and which are defined a priori, applying
them depending on whether the rule is selected or not. The RSL logic is applied
to the rule repository (RRM) as shown in Table 4. If the rule is in the selected
rule model (RMi), it is modified in the rule repository model, increasing the
process execution counter and the selection counter, and updating the ratio and
the weight (lines #3–#6). If the rule is not in the RMi, but its action is the
same, it is modified in RRM , increasing the execution counter, and updating
the ratio and the weight (lines #9–#11).

Following this logic, the RSL highlights transformation rule use frequency
(ratio), so the weight of a rule, although defined a priori, is determined by the
ratio with which the rule has been selected by RuleSelection to generate the
RMi. Similarly, not using the rule influences its weight negatively. Therefore,

Runtime Adaptation of Architectural Models 25

Table 4. RSL pseudocode

process RSL

1: for n = 1→ RRM.size do

2: if RMi contains RRM [n] then

3: RRM [n].run counter ← RRM [n].run counter + 1

4: RRM [n].selection counter ← RRM [n].selection counter + 1

5: RRM [n].ratio ← RRM [n].selection counter/RRM [n].run counter

6: RRM [n].weight ← RRM [n].weight + RRM [n].ratio ∗ RRM.bonus

7: else

8: if RMi.action = RRM [n].action then

9: RRM [n].run counter ← RRM [n].run counter + 1

10: RRM [n].ratio← RRM [n].selection counter/RRM [n].run counter

11: RRM [n].weight ← RRM [n].weight − RRM [n].ratio ∗ RRM.penalty

12: end if

13: end if

14: end for

Table 5. RRM after RSL

rule name purpose weight ratio run c selec c
Insert Chat InsertChat 2.0 1.0 3 3
Insert Audio InsertAudio 4.0 1.0 2 2
Insert Video1 InsertVideoLowQ 11.0→10.33 0.5→0.33 2→3 1
Insert Video2 InsertVideoLowQ 6.0→7.65 0.5→0.66 2→3 1→2
Insert Video3 InsertVideoHighQ 9.0 1.0 3 3
Insert BlackBoard1 InsertBlackBoard 6.0→7.65 0.5→0.66 2→3 1→2
Insert BlackBoard2 InsertBlackBoard 4.0→3.33 0.5→0.33 2→3 1
Insert FileSharing InsertFileSharing 3.0→5.5 0→1.0 0→1 0→1
Delete Chat DeleteChat 3.0 0.0 0 0
Delete Audio DeleteAudio 3.0 0.0 0 0
Delete Video DeleteVideo 3.0→5.5 0.0→1.0 0→1 0→1
Delete BlackBoard DeleteBlackBoard 3.0 0.0 0 0
Delete FileSharing DeleteFileSharing 3.0 0.0 0 0

by this logic, the transformation rules used in ModelTransformationi (Figure 4)
are adapted to system behavior. Although the attribute values involved in the
rule repository model (RRM) are set a priori, at state = i, the values depend
on previous system behavior up to that point (∀state < i).

As a practical example, let us assume the rule repository (RRM) in Table 1
and the selected rule model (RMi) generated by RuleSelection (Table 3). The
output of this transformation would update the rule repository in Table 5.

4.4 Rule Transformation

The last process required for our adaptive transformation when RuleSelection
and RSL have been executed is called RuleTransformation. This process is an
instance of the M2T concept in the transformation pattern (Figure 3), in which
the source is the selected rule model, and the target is a model-to-model trans-
formation file code (see Figure 4). Thus, the transformation file generated by
this process is an instance of the M2M concept (Figure 3) having an architectural
model (AMi) as the source and generating the new architectural model (AMi+1)

26 D. Rodŕıguez-Gracia et al.

Fig. 5. Example Rule Model extraction

as output (target). Since the rule models in the RuleSelection process change
depending on the context and system requirements, the RuleTransformation
process (that takes these models as input) creates runtime architectural model
transformations containing the new rules considered to be necessary. Hence, this
ModelTransformationi process adapts the architectural models at runtime.

For example, Figure 5 shows a rule model extraction generated by RuleSe-
lection in which the information dealing with the input and output models is

Table 6. Example of transformation by the RuleTransformation process

Portion of transformation M2T

module t1;

create

<c:iterate var="model_ref" select="/RuleSet/model_ref[@model_type = ’OUT’]" delimiter=",">

<c:get select="$model_ref/@model_name"/> :

<c:get select="$model_ref/conforms_to/@metamodel_name"/></c:iterate>

from

<c:iterate var="model_ref" select="/RuleSet/model_ref[@model_type = ’IN’]" delimiter=",">

<c:get select="$model_ref/@model_name"/> :

<c:get select="$model_ref/conforms_to/@metamodel_name"/></c:iterate>;

<c:iterate var="rules" select="/RuleSet/rules">

<c:if test="$rules[self :: MatchedRule or self :: LazyRule]">

<c:if test="$rules[self :: MatchedRule]">rule</c:if>

<c:if test="$rules[self :: LazyRule]">lazy rule</c:if>

<c:get select="$rules/@rule_name"/>

{

<c:include template="templates/fromElements.jet" passVariables="rules"/>

<c:include template="templates/toElements.jet" passVariables="rules"/>

<c:include template="templates/doBlock.jet" passVariables="rules"/>

}

</c:if>

</c:iterate>

Portion of M2M generated

module t1;

create AMOUT : AMM from AMIN : AMM;

rule InsertText

{

from

f : AMM!ComplexAbstractComponent in AMIN

(f.component_name = ’GUI’

)

to

t1 : AMM!ComplexAbstractComponent in AMOUT

(component_name <- f.component_name

),

t2 : AMM!SimpleAbstractComponent in AMOUT

(component_name <- ’Text’,

component_parent <- t1

)

}

Runtime Adaptation of Architectural Models 27

modeled, as well as the metamodel in which such models are defined, and an
example rule. Table 6 shows the RuleTransformation code fragment responsible
for transforming the rule model extraction. This part of the transformation ge-
nerates the header section of the ATL transformation file and the content of an
example rule. For each element of the rule model (RMi) there is a part of the
M2T transformation process that is in charge of translating the rules and any
other necessary information into the ATL code, which constitutes the implemen-
tation of the M2M transformation of the ModelTransformationi process.

Even though RuleTransformation was developed to convert rule models into
transformation processes for architectural models, it is extendable to any type of
M2M transformation, which is executed on a rule model defined in compliance
with the rule metamodel.

5 Related Work

In recent years, several proposals have attempted to achieve adaptive transfor-
mation. For example, in [9], the authors propose an incremental update strategy.
These transformations are built dynamically from the rules available in a rule
repository. The proposal presented in [10] shares some aspects related to the dy-
namic selection of transformation rules in common with ours. It proposes model
refactoring description and execution based on transformation rules, which have
formal parameters matched to a model subset. It differs from our proposal mainly
in that we use an M2M transformation to implement this rule selection, not a
check algorithm.

In [11], the authors propose a meta-transformation approach, in which trans-
formations are defined that accept other transformations as their input and
produce (new or modified) transformations as their output. In our approach,
although also a meta-transformation, we use JET to generate transformations
providing dynamic model adaptability (horizontal transformation), rather than
refine Platform-Independent Models (PIM) into Platform-Specific Models (PSM)
(vertical transformation). In [12], the architectural models must contain varia-
tion and selection criteria so the middleware can automate the transformation.
The authors in [13] define variability models to specify the adaptation logic,
separating it from the system functionality. In contrast, we propose to store the
adaptation logic in a repository of transformation rules.

Some other approaches, also dealing with runtime software adaptation, rely on
the use of high-level programming languages. For instance, in [14], the authors
propose a Java-based implementation that is executed within an OSGi [15] plat-
form. The main advantage of using M2M transformations instead of high-level
programming languages for dynamic adaptation is that they can evolve dynam-
ically (because they can be treated as models), while programs (whether binary
or bytecodes) cannot. In this vein, one of the main benefits of using ATL for our
M2M transformations is that it enables the use of explicit rule calls internally
as a mechanism for rule integration [16]. This way, rules can be dynamically
assembled in such a way that each rule calls up the next.

28 D. Rodŕıguez-Gracia et al.

Finally, other proposals make use of composition techniques for dynamic
model transformation. For instance, in [17,18], the authors provide a mechanism
(a rule-based model transformation language) for making model transformations
out of previously created modules. These transformation modules can either be
called up from other modules or imported from an ATL file. On the other hand,
in [19,20], the authors suggest using M2M transformations to generate transfor-
mation models, which could then be adapted or modified. Such models can later
be translated into ATL transformation files that behave, in turn, as new trans-
formation modules adapted to the requirements. But unlike our research work,
neither of these approaches makes automatic use of composition techniques to
adapt model transformation to changes in context.

6 Conclusions and Future Work

In this paper we have described our approach to provide model transformations
with a dynamic behavior allowing them to vary in time according to the new
application or user requirements. In particular, our proposal focuses on the adap-
tation of architectural models at runtime. Our scope are architectural models
which represent user interfaces made up of UI components [2]. With this aim, we
have developed a transformation pattern for modeling the structure and com-
position of the transformation schema. The transformation schema can also be
changed by creating another model conforming the transformation pattern. This
provides our proposal with a high degree of flexibility and scalability. We have
also developed an M2M process (RSL) that updates the transformation rules
stored in the rule repository. This way, along with the rule selection process
(RuleSelection), the transformation rules are able to change depending on the
circumstances. Therefore, the transformation rules stored in the rule repository
(RRM) define the adaptability of our new system, which depends on the ability
of the transformation rule repository to modify itself in view of external system
events. The scope of adaptability is defined by means of the rule selection logic.

As future work, we intend to achieve a higher degree of adaptability for our
proposal. To this end, we suggest providing the generation process of trans-
formation rule models with a more adaptive behavior. Thus, we will take into
account, in the selection logic, factors that provide new rule selection criteria to
get a higher degree of adaptability in transformations: use frequency of trans-
formation rules, rule weight management policy, etc. We also intend to possibly
carry out, through HOT [19], the process by which at runtime we turn rule
models into transformation processes applied to architectural models. Once the
required adaptability level is reached, and using the scalability degree of our
proposal, we’ll focus on providing our system with a decision-making technique
to be able to manipulate the rule repository so that the system can evolve at
runtime and adapt itself to the interaction with the user. Moreover, another
improvement we wish to include in our system, is the development of an editing
tool for transformation rules in a similar way to that in [14]. On the other hand,
this tool would allow us to execute the rule selection process to check which rules
are selected from the repository and the context information.

Runtime Adaptation of Architectural Models 29

Acknowledgments. This work has been supported by the EU (FEDER) and
the Spanish Ministry MICINN under grant of the TIN2010-15588 and TRA2009-
0309 projects, and under a FPU grant (AP2010-3259), and also by the JUNTA
ANDALUCÍA (proyecto de excelencia) ref. TIC-6114, http://www.ual.es/acg.

References

1. Blair, G., Bencomo, N., France, R.B.: Models@RT. Computer 40(10), 22–27 (2009)
2. Criado, J., Vicente-Chicote, C., Iribarne, L., Padilla, N.: A Model-Driven Approach

to Graphical User Interface RT Adaptation. Models@RT, CEUR-WS 641 (2010)
3. Criado, J., Padilla, N., Iribarne, L., Asensio, J.-A.: User Interface Composition

with COTS-UI and Trading Approaches: Application for Web-Based Environmen-
tal Information Systems. In: Lytras, M.D., Ordonez De Pablos, P., Ziderman, A.,
Roulstone, A., Maurer, H., Imber, J.B. (eds.) WSKS 2010. CCIS, vol. 111, pp.
259–266. Springer, Heidelberg (2010)

4. Iribarne, L., Padilla, N., Criado, J., Asensio, J., Ayala, R.: A Model Transforma-
tion Approach for Automatic Composition of COTS User Interfaces in Web-Based
Information Systems. Information Systems Management 27(3), 207–216 (2010)

5. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA Workshop on Generative Tech. in the Context of the MDA, pp. 1–17
(2003)

6. Eclipse Java Emitter Templates (JET), http://bit.ly/SdxyWw
7. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation

tool. Science of Computer Programming 72(1-2), 31–39 (2008)
8. Gronback, R.: Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Addison-Wesley Professional (2009)
9. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for

the Evolution of Model-Driven Systems. In: Wang, J., Whittle, J., Harel, D., Reg-
gio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg
(2006)

10. Porres, I.: Rule-based update transformations and their application to model refac-
torings. Software and Systems Modeling 4(4), 368–385 (2005)

11. Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-driven engi-
neering. Computer 39(2), 51–58 (2006)

12. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjørven, E.: Using
Architecture Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)

13. Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Spec-
ification, Simulation and Execution of Dynamic Adaptive Systems. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg
(2009)

14. Serral, E., Valderas, P., Pelechano, V.: Supporting Runtime System Evolution to
Adapt to User Behaviour. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
378–392. Springer, Heidelberg (2010)

15. OSGi – The Dynamic Module System for Java, http://www.osgi.org/
16. Kurtev, I., van den Berg, K., Jouault, F.: Rule-based modularization in model

transformation languages illustrated with ATL. Sci. Comp. Prog. 68(3), 138–154
(2007)

17. Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module superimposition: a com-
position technique for rule-based model transformation languages. Software and
Systems Modeling 9(3), 285–309 (2010)

http://www.ual.es/acg
http://bit.ly/SdxyWw
http://www.osgi.org/

30 D. Rodŕıguez-Gracia et al.

18. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a general composition
semantics for rule-based model transformation. In: MDE Languages and Systems,
pp. 623–637. Springer (2011)

19. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: MDA-Found. & Applic., pp. 18–33. Springer (2009)

20. Tisi, M., Cabot, J., Jouault, F.: Improving Higher-Order Transformations Support
in ATL. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 215–229.
Springer, Heidelberg (2010)

	Runtime Adaptation of Architectural Models: An Approach for Adapting User Interfaces
	Introduction
	A Running Example: User Interface Adaptation
	Model Transformation Pattern
	Adaptive Model Transformation
	Transformation Rules: An Overview
	Rule Selection
	Rule Selection Log (RSL)
	Rule Transformation

	Related Work
	Conclusions and Future Work
	References

